Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash.

نویسندگان

  • Xavier Querol
  • Andrés Alastuey
  • Natàlia Moreno
  • Esther Alvarez-Ayuso
  • Antonio García-Sánchez
  • Jordi Cama
  • Carles Ayora
  • Mariano Simón
چکیده

The use of zeolitic material synthesized from coal fly ash for the immobilization of pollutants in contaminated soils was investigated in experimental plots in the Guadiamar Valley (SW Spain). This area was affected by a pyrite slurry spill in April 1998. Although reclamation activities were completed in a few months, residual pyrite slurry mixed with soil accounted for relatively high leachable levels of trace elements such as Zn, Pb, As, Cu, Sb, Co, Tl and Cd. Phytoremediation strategies were adopted for the final recovery of the polluted soils. The immobilization of metals had previously been undertaken to avoid leaching processes and the consequent groundwater pollution. To this end, 1100 kg of high NaP1 (Na6[(AlO2)6(SiO2)10] .15H2O) zeolitic material was synthesized using fly ash from the Teruel power plant (NE Spain), in a 10 m3 reactor. This zeolitic material was manually applied using different doses (10000-25000 kg per hectare), into the 25 cm topsoil. Another plot (control) was maintained without zeolite. Sampling was carried out 1 and 2 years after the zeolite addition. The results show that the zeolitic material considerably decreases the leaching of Cd, Co, Cu, Ni, and Zn. The sorption of metals in soil clay minerals (illite) proved to be the main cause contributing to the immobilization of these pollutants. This sorption could be a consequence of the rise in pH from 3.3 to 7.6 owing to the alkalinity of the zeolitic material added (caused by traces of free lime in the fly ash, or residual NaOH from synthesis).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemical Stabilization of Some Heavy Metals in an Artificially Multi-Elements Contaminated Soil, Using Rice Husk Biochar and Coal Fly Ash

A greenhouse experiment has been planned for this study to delineate the benefits of two types of rice husk biochars (namely B300 and B600 which are prepared at 300°C and 600°C, respectvely) and coal fly ash (CFA), as soil amendments, for decreasing the amount of some heavy metals (like Pb, Cd, Ni, Cr, and Cu) as well as mobility and phytoavailability in an artificially-calcareous multi-element...

متن کامل

Chemical Stabilization of Some Heavy Metals in an Artificially Multi-Elements Contaminated Soil, Using Rice Husk Biochar and Coal Fly Ash

A greenhouse experiment has been planned for this study to delineate the benefits of two types of rice husk biochars (namely B300 and B600 which are prepared at 300°C and 600°C, respectvely) and coal fly ash (CFA), as soil amendments, for decreasing the amount of some heavy metals (like Pb, Cd, Ni, Cr, and Cu) as well as mobility and phytoavailability in an artificially-calcareous multi-element...

متن کامل

Characterization of CFB-Coal Fly Ash Zeolitic Materials and Their Potential Use in Wastewater Treatment

Two different fly ash (FA) samples were tested for their ability to give synthetic zeolitic products. Polish bituminous (PB) and South African (SA) coal fly ash (FA) samples, derived from pilot-scale circulated fluidized bed (CFB) combustion facilities, have been utilized as raw materials. The two FAs underwent a hydrothermal activation with 1M NaOH solution at 90°C for 24 h. Two different FA/N...

متن کامل

Utilization of zeolites synthesized from coal fly ash for the purification of acid mine waters.

Two pilot plant products containing 65 and 45% NaP1 zeolite were obtained from two Spanish coal fly ashes (Narcea and Teruel Power Station, respectively). The zeolitic product obtained showed a cation exchange capacity (CEC) of 2.7 and 2.0 mequiv/g, respectively. Decontamination tests of three acid mine waters from southwestern Spain were carried out using the zeolite derived from fly ash and c...

متن کامل

Study of Remediation of Soil Contamined with Heavy Metals by Coal Fly Ash

The labile fraction of heavy metals in soils is the most important for toxicity for plants. Thus it is crucial to reduce this fraction in contamined soils to decrease the negative effect of heavy metals. In an experiment, the effects of two additives on the labile fractions of Cu, Mn and Zn were investigated in a soil contamined during long-term application. The additive used was the coal fly a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemosphere

دوره 62 2  شماره 

صفحات  -

تاریخ انتشار 2006